Memory
Mudabbir uses a two-tier memory system: file-based sessions for conversation history and optional Mem0 for semantic long-term memory.
File Store
JSON-based session storage with indexing and search.
Mem0 Integration
Semantic memory with auto-learning and vector search.
Sessions
Session management, grouping, and search.
Context Building
How memory is assembled into the agent’s context window.
Memory Isolation
Per-user memory scoping for multi-channel deployments.
Memory Architecture
┌─────────────────────────────────────┐│ Context Builder ││ (Assembles context for the agent) │├──────────┬──────────────────────────┤│ │ ││ File │ Mem0 Semantic ││ Store │ Memory (optional) ││ │ ││ Sessions │ Auto-learn ││ Facts │ Semantic search ││ Index │ Vector store │└──────────┴──────────────────────────┘Quick Setup
File Store (Default)
No configuration needed. Sessions are automatically saved to ~/.mudabbir/memory/.
Mem0 (Optional)
For semantic memory with auto-learning:
curl -fsSL https://mudabbir.fly.dev/install.sh | sh
# Or add the memory extra manuallypip install mudabbir[memory]
export MUDABBIR_MEM0_AUTO_LEARN=trueexport MUDABBIR_MEM0_LLM_PROVIDER="ollama"export MUDABBIR_MEM0_LLM_MODEL="llama3.2"export MUDABBIR_MEM0_EMBEDDER_PROVIDER="ollama"export MUDABBIR_MEM0_EMBEDDER_MODEL="nomic-embed-text"Was this page helpful?